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We present a method for detecting communities in bipartite networks. Based on an extension of the k-clique
community detection algorithm, we demonstrate how modular structure in bipartite networks presents itself as
overlapping bicliques. If bipartite information is available, the biclique community detection algorithm retains
all of the advantages of the k-clique algorithm, but avoids discarding important structural information when
performing a one-mode projection of the network. Further, the biclique community detection algorithm pro-
vides a level of flexibility by incorporating independent clique thresholds for each of the nonoverlapping node
sets in the bipartite network.
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I. INTRODUCTION

The theoretical understanding of the structure and func-
tion of complex networks has grown rapidly during the past
few years �1–3�. One large component of the field of com-
plex networks regards the study of community structure in
networks; for reviews see �4,5�. Community structure de-
scribes the property of many networks that nodes are divided
into “communities” with many intracommunity links and
sparse connections between the densely connected modules.
In spite of a focused research effort, the mathematical tools
developed to describe the structure of large complex net-
works are continuously being refined and redefined.

Currently, the endeavor of detecting community structure
in complex networks can be divided into two main ap-
proaches. One main class can be labeled global methods, of
which the most notable example is the modularity introduced
by Newman and Girvan �6�; global methods regard commu-
nity detection as a global optimization problem, where the
objective function is particular to each method. Due to the
complexity of such optimization problems, the global meth-
ods are typically stochastic in nature. The other class is local
methods, where the best known example is the k-clique
method described by Palla et al. �7,8�; here, local structural
information is utilized to reveal the community structure of a
network. The local methods are usually deterministic.

Although widely studied in the fields of statistics and
computer science �9–12�, the study of bipartite networks and
their community structures has only recently been moving
into the focus of the network community. So far, all efforts
have been focused on global community detection methods
�13–15�. Here we present a simple algorithm—based on a
local framework—that has considerable power, flexibility,
and accuracy.

II. BIPARTITE NETWORKS

A bipartite network is a network with two nonoverlapping
sets of nodes � and �, where all links must have one end
node belonging to each set. As is clear from the examples
below, many real world networks are naturally bipartite:

�i� Social networks. The available data regarding many
different social networks consist of what is known as “affili-
ation networks.” Examples of affiliation networks include
the scientific collaboration network �16–18� �where the two
node sets consist of papers and authors, respectively�, the
movie-actor network, where the network edges connect an
actors and films �19�, and artistic collaboration networks
�18�, where a link indicates the participation of a creative
team. Other examples of social networks that can be inferred
from bipartite data are the movie-recommendation network
�20� that links users to the movies they have watched, or the
song-listener network that link music listeners to the music
they play on their computer �21,22�.

�ii� Biological networks. Many important types of biologi-
cal networks are naturally bipartite. Examples of bipartite
biological networks are the metabolic network, where the
two types of nodes are reactions and metabolites �23�, the
human disease network of genes and diseases �24�, and the
network describing drugs and their molecular targets �25�.

�iii� Information networks. The bipartite structure is also
very common for information networks. The generic ex-
ample is a word-document network, where one type of nodes
is documents �webpages, emails, dictionary entries, etc.� that
link to the words they contain �26–29�

Most of the studies of real world networks listed above do
not analyze the bipartite networks directly, but rather one-
mode projections of the network. Below, we will demon-
strate how the one-mode projection of a bipartite network
disregards important network information and argue that a
direct analysis of the bipartite network is a more natural op-
tion that captures important nuances of the network structure
that are invisible to the analyses based on unipartite projec-
tions.

A bipartite network has a bipartite �n��n�� adjacency
matrix E, where n� and n� are the number of nodes in each
set. This matrix is constructed such that

Eij = �1 if there is a link between node i and j, and

0 otherwise.
�

�1�

In real networks, this matrix is typically very sparse. Any
bipartite network can be transformed into two unipartite net-
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works. One network consisting of the n� nodes in the � set
and one network consisting of the n� nodes in the � set.
These one-mode projections are obtained by calculating the
two symmetric, weighted matrices the A�=EET and A�

=ETE. The diagonal elements Aii of these matrices contain
the number of links connected to node i in the bipartite net-
work, and the off-diagonal elements Aij contain information
on the number of nodes in the complementary set are shared
by nodes i and j.

The conceptual simplicity of the one-mode projection
comes at a high cost. First of all, the procedure typically
eradicates the sparsity of the E matrix; this is especially
problematic, when constructing the adjacency matrix for the
smaller set of nodes, in the case where one of the node sets is
significantly larger than the other. Secondly, much of the
information present in the bipartite state becomes encoded in
the weights of the adjacency matrix. However, due to tech-
nical difficulties regarding the analysis of weighted matrices
�30� and the high link density of the one-mode projections �if
the adjacency matrix is densely populated, all nodes are con-
nected and the network has very little structure�, these ma-
trices are usually thresholded such that only entries higher
than some threshold are retained. Similarly, the diagonal of
the one-mode adjacency matrices is usually set to zero, since
self-links are not of interest in the subsequent network analy-
sis.

One aspect that is rarely discussed in the literature is the
fact that even if we keep all the off-diagonal weights in the
one-mode adjacency matrix, essential information is lost
when performing the one mode projection. This is clear from
the fact that we cannot reconstruct E from A� and A�. It is,
however, instructive to study precisely what information is
lost. Specifically, the problem is that the one-mode adjacency
matrices only contain two-point correlations. Given two
nodes, i and j in one of the sets, the corresponding adjacency
matrix informs us how many nodes these two share in the
complementary set. Given a third node k, we also know the
number of nodes that are shared by i and k or j and k,
respectively, in the complementary set, but we have no in-
formation about which nodes from the complementary set
that i, j, and k connect to in common: The same set of nodes
could be shared by i , j, and k, or the nodes in the comple-
mentary set could be shared pairwise, but not among all
three. A practical example of this problem is shown in Fig. 1.

In Fig. 1 we display 3 simple bipartite networks. The
network described in Fig. 1�a� shows a case where all �
nodes are linked to a single node in the � set. A practical
example of this motif can be found in the movie-actor net-
work, where this would be the case when four individuals act
together in a single film. In Fig. 1�b� a different network is
displayed. Here, all four nodes in the � set are intercon-

(a)

(b)

(c)

FIG. 1. �Color online� Three distinct bipartite networks that re-
sult in identical one-mode projections. In the first case, �a�, the
nodes �= �a ,b ,c ,d� share the single node �= �1� in the comple-
mentary set. �b� The second case, that includes the nodes �
= �a ,b ,c ,d� and the complementary nodes �= �1,2 ,3 ,4 ,5 ,6�, has
every pair of nodes in the � level linked via different nodes in the
complementary set. In the third case, �c� three of the the four �
= �a ,b ,c ,d� nodes, �a ,b ,d�, share a single node in the complemen-
tary node set, while all other linkages between � nodes in this
network are pairwise and run via nodes in the complementary set
that are exclusive to the two nodes linked.

FIG. 2. �Color online� Maximally connected bigraphs. The no-
tation Ka,b means that the complete bigraph consists of a of the
black nodes in the � set and b of the larger nodes nodes in the � set.

LEHMANN, SCHWARTZ, AND HANSEN PHYSICAL REVIEW E 78, 016108 �2008�

016108-2



nected via pairwise links to six distinct nodes in the � set. In
the movie-actor network this corresponds to four actors who
have all been in films together, but with precisely two com-
mon actors per film; these six movies could be far apart in
time and space. Therefore the significance of this network
motif is very different from the significance of the motif
displayed in Fig. 1�a�. Finally, the network in Fig. 1�c� lies
somewhere in between the two other cases.

Important qualifying information about the nodes shared
in the complementary set is not carried over in the one mode
projection of the network. When we perform the one-mode
projection of each of these three networks onto the � nodes
�we retain the weights but remove the diagonals�, the one-
mode adjacency matrices become

A�a� = A�b� = A�c� =	
0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 . �2�

In the one-mode projection the three networks become indis-
tinguishable four cliques.

In summary, the one-mode projection approach disregards
important network information in two distinct steps. First,
when the projection itself is performed, all �sparse� informa-
tion about the bipartite linkages is reduced to a dense net-
work of two-point correlations. Secondly, all of the informa-
tion contained in the weights is typically discarded in a
subsequent thresholding operation. In the following section,
we will explain a simple way of analyzing the community
structure of the bipartite network directly.

III. BICLIQUE COMMUNITIES

In analogy with the unipartite case, the basic observation
on which our community definition relies is that a typical
community consists of several complete sub-bigraphs �32�
that tend to share many of their nodes. A number of complete
bipartite graphs are displayed in Fig. 2. We now define a Ka,b
clique as a complete subgraph with a nodes in the � node set
and b nodes in the � node set. A Ka,b clique can be identical
to a maximal complete subgraph or it can exist on a subset of
the nodes of a maximal complete subgraph. Generalizing
from �7�, we now define a Ka,b clique community as a union
of all Ka,b cliques that can be reached from each other
through a series of adjacent Ka,b cliques. We define two Ka,b
cliques to be adjacent if their overlap is at least a Ka−1,b−1
biclique. Another way of saying this is that the two cliques
must share at least a−1 upper vertices and b−1 lower verti-
ces. See Fig. 3.

An important feature of the biclique community approach
is that the biclique method provides an immediate context to
the communities that are detected. In the movie-actor net-
work, a list of actors is always accompanied by a list of
films. It is immediately clear why the actors in a group be-
long together—we know the ouevre that they share. In the
metabolic network a list of metabolites is accompanied a list
of the reactions they participate in; this presence of context is
an important help in determining the function of detected

communities. In this sense, the bicommunity information is
more valuable that the one obtained by finding structure in
the two unipartite projections because it provides specific
links between the communities that are present in the two
node sets; we will discuss precisely what we mean by this in
the next section. The biclique method described here is a
related to coclustering �9–12�.

IV. RELATION TO k-CLIQUE COMMUNITIES

When bipartite network information is available, the bi-
clique community detection method is an attractive alterna-
tive to the k-clique algorithm. The k-clique algorithm is un-
able to analyze sparse network regions. This is due to the fact
that two-clique communities are simply the connected com-
ponents of the network and are contain little information
about the network structure. The first nontrivial k clique has
size k=3. These two facts combined, result in the inability to
analyze sparse network regions—simply because nodes must
have at least two links in order to qualify for participation in
a three-clique. In networks with heavy tailed degree distribu-
tions, a large fraction of the nodes have degree less than 2
and an even larger fraction of nodes do not participate in
cliques of size 3 or greater.

If bipartite data is available, the biclique method is able to
detect subtle structures. In order to understand why this is the
case, it is useful to consider the relation between the two
methods. We begin by revisiting Fig. 1. In terms of cliques,
Fig. 1�a� corresponds to a K4,1 clique exemplified by four
authors part of the same movie. Fig. 1�b� corresponds to six
adjacent K2,1 cliques joined in a K2,1 community. Finally,
Fig. 1�c� can be recognized as one K3,1 clique and three K2,1
cliques. When considering the community structure the small
network in Fig. 1�c�, all nodes are included if we set the

FIG. 3. �Color online� Biclique adjacency. Two Ka,b cliques are
adjacent if they share at least a Ka−1,b−1 clique. In this figure we list
a few examples. The two adjacent K1,2 cliques share a K0,1 biclique,
the two adjacent K1,3 cliques share a K0,2 clique, the two adjacent
K2,2 cliques overlap by a K1,1 clique, and the two adjacent K2,3

cliques share a K1,2 clique.
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threshold at K2,1, but we only include the nodes �= �a ,b ,c�
and �= �1� if we raise the threshold and look for K3,1 com-
munities. In this small example, we use the biclique tech-
nique to look “inside” the four clique that arises when we
project the small bipartite networks onto the � nodes.

The biclique communities have clear translations in terms
of the two unthresholded one-mode projections. The K2,1
communities correspond to connected components in the
projection onto the � nodes; the two � nodes in each of the
cliques K2,1

�1� and K2,1
�2� are linked in the one-mode projection

onto the set of � nodes if the two cliques share a K1,0 clique,
that is, if the two cliques are adjacent. Similarly, the � nodes
in each of the two cliques K2,1

�2� and K2,1
�3� are also linked in the

one-mode projecton onto the � network if they share a K1,0
clique. Thus the community of the three adjacent K2,1 nodes
corresponds to a connected set of nodes �a two-clique com-
munity� in the network of � nodes. This small example is
easily generalized to the case of n adjacent K2,1 cliques. A
similar argument shows that K1,2 communities correspond to
connected components in the � networks. What is particu-
larly noteworthy here is that from the bipartite community
detection algorithm—in addition to the connected
components—we also obtain a list of nodes in the comple-
mentary set of nodes that correspond to the connected com-
ponents. These nodes do not necessarily form a connected
component in the complementary one-mode projection.

The result mentioned in the previous paragraph is readily
generalized. In fact, Ka,1 and K1,b biclique communities cor-
respond to a- and b-clique communities in the projections
onto � and � nodes, respectively. A clique Ka,1

�1� results in an
a clique �consider Fig. 1�a��; another clique Ka,1

�2� results in
another a clique. Now, if these two share a K0,a−1 clique
�e.g., in the movie-actor network, this would correspond to
sharing a−1 actors�, then these a−1 nodes are fully con-
nected an therefore an a−1 clique. In other words, this cor-
responds to an a-clique community in the � one-mode pro-
jection. This result can be generalized to the case of K1,b
biclique communities and b-clique communities in the � pro-
jection. As is clearly illustrated in the examples displayed in
Fig. 1, this result is not valid going from the one-mode pro-
jection to the bipartite case.

In general, the biclique communities have the following
relationship to the one-mode projections: A Ka,b community
corresponds to

�1� An a-clique community D in the projection onto the �
nodes.

�2� A b-clique community G in the projection onto the �
nodes.

�3� Further, in order to qualify for membership in the
community D, a node must connect to a node in G and vice
versa.

This is precisely why the biclique algorithm presented
here is able to detect structures between two-clique commu-
nities and three-clique communities where the k-clique algo-
rithm fails to locate structure. The K2,2 clique communities,
for example, are simply connected components in each one-
mode projection, with the additional constraint that the con-
nected component in each projection must be correlated with
the complementary connected component as described in
item �3� above. This is the precise content of the argument in

the previous section that the biclique algorithm provides con-
text to the communities. We emphasize that all of the argu-
ments presented here apply to the unthresholded version of
the one-mode projections—thresholding the one-mode pro-
jections enhances the advantages of the biclique community
detection method.

The Ka,b clique community method possesses the advan-
tages of the k-clique algorithm. The most important strength
of the k-clique method is that distinct communities can over-
lap by sharing their nodes. This ability is essential when
analyzing many real networks: Consider social networks: In
social networks, most actors participate many communities
of family, friends, and work relations. The biclique algorithm
presented here allows the same type of overlap—nodes in the
� set can overlap with other � nodes and similarly for the �
set. Cases where there is overlap between nodes from both
sets of nodes are particularly interesting. As it the case with
the k-clique algorithm, the node overlap allows the user to
zoom out and observe the network of communities, linked by
common nodes.

Another well-known advantage of the k-clique method is
that it allows the user to change the resolution at which the
network is observed, by adjusting the clique size k. A high
value of k allows the user to observe structures in the denser
regions of the graph, whereas low values of k allows the user
to study the structure of the sparser regions of the network.
In the case of the Ka,b cliques, this ability is enhanced be-
cause we are able to vary the sizes of a and b independently
of each other. As an example, consider the movie-actor net-
work. We can search for groups of actors that have acted as
ensembles by choosing a to be low and b to be high, or we
search for a series of films that share a small group of actors
by choosing a high a and a small b. By varying a and b, we
can systematically probe different aspects of the community
formations by studying the size distributions of communities
and by visual inspection �7,33�. Section VI elaborates on this
point.

V. DETECTING BICLIQUE COMMUNITIES

The biclique communities are detected by a procedure
analogous to the one presented for k-clique detection in �7�,
however, some of the steps in the detection algorithm are
different. We will describe the algorithm for detecting com-
munities of size Ka,b in the following.

Enumerate maximal bicliques. To find the biclique com-
munities, we begin isolating the N maximal bicliques in the
bipartite network under study. We use a freely available al-
gorithm LCM �linear time closed itemset miner� version 4.0
�34� �downloaded from �35�� for this purpose. Using the list
of maximal bicliques, we construct two �N�N� symmetric
clique-overlap matrices L� and L�. The matrix elements of
L� contain information about the clique overlap among the
nodes in the � set. Along the diagonal, this matrix contains
the number of � nodes in maximal biclique i. The off-
diagonal matrix elements contain the number of � nodes that
maximal biclique i and maximal biclique j have in common.
The matrix L� is similar but describes the overlap among the
� nodes.
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Threshold overlap matrices. The thresholding procedure
goes through several steps. The first step evaluates the diag-
onal elements. Diagonal elements greater than or equal to a
are set to one, all other diagonal elements are set to zero. We
then threshold the off-diagonal elements; this step is slightly
more involved than the corresponding step in the k-clique
algorithm. First we set all elements of columns and rows that
correspond to a zero diagonal element to zero. Next, we
threshold the remaining elements, keeping only elements
greater than or equal to a−1. We carry out the same proce-
dure for matrix L�, using b in the place of a in the instruc-
tions above. Each of the thresholded overlap matrices �let us
call them L�� and L��� now contain information about the
overlap in each of the two sets of nodes. In order for us to
find the Ka,b clique community information, we now create
the final total overlap matrix L by only accepting the clique
overlap, when it is present in both of the individual matrices,
so we set L=L�� ∧L�� , where ∧ is the logical operation AND.
The total clique overlap matrix, L, informs us about what
maximal cliques are adjacent in the Ka−,b−1 sense.

Find connected components. The final step is to determine
the connected components of L; each component corre-
sponds to a biclique community. From the maximal bicliques
that are members of each community, we extract the indices
of nodes that participate in each biclique community.

VI. NETWORK OF COMMUNITIES

It is possible to construct a network consisting of the bi-
clique communities. In this network, each community is a
node and two communities are linked if they have nodes in
common. Nodes from each partition of the network are al-
lowed to overlap, so the network has two types of links ��
links and � links�, the number of overlapping nodes can be

a

b c d

Ka,b
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8 9 10 11 12

FIG. 4. �Color online� Networks of communities for in cond-
mat network �40� for various choices of Ka,b. In these plots, authors
are represented by the dark red and papers are represented by light
green; thus author node overlap is shown as a dark red link and
paper overlap is shown as a light green link. Panel �a� shows the
network of communities for K1,2, panel �b� shows the network of
communities for K8,2, panel �c� shows the network for K3,5, and
panel �d� describes the case of K2,12. See the main text for details.
All panels are screenshots from BCFinder �33�.
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FIG. 5. �Color online� In many sparse real world networks, the
number of maximal bicliques grows linearly with the size of the
input data base. Panel �a� shows the number of maximal bicliques
found for the IMDb �19� and cond-mat �40� networks as a function
of size of the networks �measured in number of edges�. The solid
line labeled by circles shows is the number of bicliques found in the
IMDb data and the dashed line labeled by circles is the number of
bicliques in the randomized version of the same network; the lines
labeled by triangles show the same quantities for the cond-mat net-
work. The network was randomized using a bipartite version of the
algorithm suggested in �39�. There are significant differences be-
tween the real and randomized data sets in the IMDb data, whereas
there is little change for the cond-mat data. These differences are
mainly due to the fact that, on average, there are more actors in-
volved in the production of movies than there are authors of scien-
tific papers. A forthcoming paper discusses the subject of biclique
motifs in various bipartite networks. Panel �b� shows the growth of
the bipartite adjacency matrix as a function of the number of edges
included in the analysis; solid line marked by squares is the number
of distinct movies and the dashed line marked by squares is the
number of actors; the lines labeled by triangles display the number
of authors �solid line� and the number of papers �dashed line� for
the cond-mat network. The incremental growth of the number of
movies in the IMDb network is explained in the main text.
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encoded as the link weight. Since the communities have dif-
ferent sizes and we would like to be able to easily access this
information, we scale the node-size according to the total
number of members of each community. The final piece of
information is the ratio of � nodes to � nodes, which we can
obtain by coloring the node �e.g., as a pie chart�. Figure 4
displays a number of such networks of communities for the
cond-mat network.

Let us think about the expected behavior of the network
of communities. In the case of K1,1 �cf. Fig. 4�a�� the network
of communities is simply one large node displaying the frac-
tion of � and � nodes. When we increase a and b in Ka,b, this
node breaks apart into smaller pieces. If the network is
highly modular, the resulting network of communities will be
quite sparse and many nodes will have degree zero; if the
network is homogeneous, we find a densely interconnected
network of communities. For a given choice of a and b, the
structure of the resulting network of communities provides a
useful way to estimate the information content of the indi-
vidual communities.

The network of communities illustrates what aspects of
community structure we are probing, when we adjust the
values of a and b. This is illustrated in Figure 4. Panel 4�a�
shows the network of communities for K1,2. Displayed here
is the connected component in the paper network and the pie
chart shows the fractions of authors and papers in the net-
work.

Figure 4�b� shows the network of communities based on
K8,2 cliques. The emphasis here is on a large number of
shared authors, and as a consequence, each community is
dominated by authors. The vast majority of links are dark red
indicating author overlap between the communities. Figure
4�c� shows the network of communities for K3,5. Here the

ratio of authors to papers in each community mirrors the
global ratio, and all of the communities are of similar in size.
In this case the node overlap is equally distributed between
author and paper overlap. The typical link weight in this
network is zero or one. See Fig. 6 for a detailed discussion of
two K3,5 communities. Finally, Fig. 4�d� shows the network
of communities for K2,12. In this case, the emphasis is on
many shared papers, so all communities contain many more
papers than authors �they are mostly light green�. Similarly,
the majority of links are paper links; the typical weight is
small, between zero and two, but a few heavy links also
exist. This threshold probes a completely different aspect of
the bipartite network than the K8,2 communities.

The networks in Fig. 4 reveal how to analyze the network.
If we wish to detect groups of longtime collaborators, we
choose small a and large b, in this case each community
contains only a few authors and many papers, while the over-
lap with other communities of other longtime collaborators
will mainly be papers. The largest community in Fig. 4�b�
has 12 authors and 290 papers, but such a large collaboration
is the exception rather than the rule; most communities con-
tain longstanding theoretical collaborations among 2–4 au-
thors who have written between 20 and 60 papers together. If
we wish to search for large collaborations, we choose large a
and small b: This allows us to find communities of large
�typically experimental� collaborations; in this case the com-
munities contain many authors and few papers, while the

TABLE I. Community displayed in top panel of Fig. 6.

Authors Papers

H.E. Stanley On the Origin of Power-Law Fluctuations in
Stock Prices

P. Gopikrishnan Quantifying Stock Price Response to Demand
Fluctuations

V. Plerou Symmetry Breaking in Stock Demand

L.A.N. Amaral Inverse Cubic Law for the Probability
Distribution of Stock Price Variations

Universal and non-universal properties of
cross-correlations in financial time series

A Random Matrix Approach to Cross-
Correlations in Financial Data

Scaling of the distribution of fluctuations
of financial market indices

Economic Fluctuations and Diffusion

Identifying Business Sectors from Stock Price
Fluctuations

Statistical Properties of Share Volume Traded
in Financial Markets

Ivory Tower Universities and Competitive
Business Firms

TABLE II. Community displayed in bottom panel of Fig. 6.

Authors Papers

S. Havlin Scale Invariance in the Nonstationarity of
Physiological Signals

H.E. Stanley Noise Effects on the Complex Patterns of
Abnormal Heartbeats

P.C. Ivanov Behavioral-Independent Features of Complex
Heartbeat Dynamics

A.L. Goldberger Sleep-Wake Differences in Scaling Behavior
of the Human Heartbeat:

Analysis of Terrestrial and Long-Term Space
Flight Data

L.A.N. Amaral Magnitude and Sign Correlations in Heartbeat
Fluctuations

Dynamics of Sleep-Wake Transitions During
Sleep

Levels of Complexity in Scale-Invariant Neural
Signals

Relation between Magnitude Series Correlations
and Multifractal Spectrum Width

Multifractality in Human Heartbeat Dynamics

A Stochastic Model of Human Gait Dynamics

Stochastic Feedback and the Regulation of
Biological Rhythms

Quantification of Sleep Fragmentation Through
the Analysis of Sleep-Stage Transitions

Characterization of Sleep Stages by Correlations
of Heartbeat Increments
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node overlap with other communities consists of authors. In
the middle interval when a is around the same size as b, we
find balanced groups of medium size that overlap each other
both with papers and authors. If a network is highly modular
�as is the case for the cond-mat network�, the size of overlap
is typically very small, but in dense, more homogeneous net-
works, the overlaps can constitute a significant fraction of
the nodes in each community. The considerations above are
specific to the cond-mat network, but a similar analysis can
be performed on any bipartite network.

VII. ALGORITHMIC COMPLEXITY

The algorithm proposed above can be used to analyze
large sparse networks efficiently. In analogy the problem of
enumerating all maximal cliques �which is a classic NP com-
plete problem �36�, which must be solved to detect k-clique
communities�, the problem of enumerating all maximal bi-
cliques is NP complete �37�. Roughly speaking, the problem
is NP complete because the number of maximal bicliques, N,

can grow exponentially as a function of the size of the input
data. However, as we shall see in the following, this is rarely
problem in sparse real world networks. Modern algorithms
exist that are very efficient on sparse graphs �34,38�. The
algorithm that we utilize �34� has a computational complex-
ity of this step proportional to N in the network being ana-
lyzed �with respect to memory usage, this algorithm is also
quite efficient–the memory usage scales linearly with the
size of input data�.

Figure 5 shows how N scales linearly as a function of the
number of edges M in two large real world networks: The
internet movie database �IMDb� network of actors and mov-
ies �19� and the network of scientific authors publishing in
the cond-mat section of the arXiv database �40�. In the case
of IMDb, the data for the plots in Fig. 5 was created by
beginning with the network of all male actors and moves in
1965 and constructing the adjacency matrices and running
LCM; then the data for female actors in movies from 1965
was added and the procedure repeated. We expanded the net-
work gradually until it encompassed all movies and all actors

(a)

(b)

FIG. 6. �Color online� The biclique algorithm in action on the cond-mat network �40� �years: 1996–2006�. The top panel shows a
K3,5-clique community of 4 authors and 11 papers; this community is a group of scientists studying econo-physics. The bottom panel shows
another K3,5-clique community, this time consisting of 5 authors and 13 papers. The topic of this second community is bio-physics, more
specifically analyses of various biological time series. A key point is that two authors �Stanley and Amaral� are members of both commu-
nities. The division into biclique communities make it immediately underlines the importance of node overlap: There is no doubt that Stanley
and Amaral are full members of both communities. However, it is also immediately clear why the communities are distinct: they regard
different subjects. The presence of context �a list of authors are complemented by a list of papers and vice versa� highly enriches our
understanding of the communities. A list of authors and papers in these two communities can be found in the Appendix. Both panels are
screenshots from BCFinder �33�.
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and actresses from 1965 to 1980. Separating the male and
female actors has the consequence that the number of movies
only grows half as often as the number of actors—this ac-
counts for the steplike growth of the black solid line in Fig.
5. In the case of the cond-mat data, a similar method was
used, gradually expanding the adjacency matrix 1992, in-
cluding subsequent years incrementally until 2006. The same
procedure is applied to a randomized version of each data
set. Figure 5�a� shows the number of maximal bicliques as
plotted vs the number of edges in the two networks �IMDb,
solid black line; cond-mat, solid gray line�. The differences
between the real and randomized data sets �IMDb random-
ized, dashed black line; cond-mat, dashed gray line� display
clearly that there is significant additional clique structures in
the real network data. Figure 5�b� shows how the number of
nodes grow as a function of the number of edges. In the case
of IMDb, the final network contains 497 386 edges connect-
ing 163 416 actors to 41 917 movies. This network contains
some 372 833 maximal bicliques that it takes the LCM algo-
rithm 3.1 seconds to locate using a standard laptop with a
2.16 GHz Intel Core 2 Duo processor and 2 GB random as-
sess memory �RAM�. In the case of cond-mat, the final net-
work contains 217 690 edges connecting 46 622 authors to
70 975 papers. This network contains some 81 697 maximal
bicliques that it takes the LCM algorithm 0.7 seconds to lo-
cate on the same computer.

Creating the overlap matrices and thresholding is O�N2�
�O�M2�, where M is the number of edges in the network.
Finding connected components in the overlap matrices can
be done in O�N+ML�, where ML is the number of edges of
edge in the overlap matrix L and since this matrix is also
sparse we have O�N� for the connected components. These
steps are the algorithmic bottleneck; the processing time is a
little over 30 minutes for the cond-mat network on the hard-
ware mentioned above. The total complexity of the algorithm
is O�N2��O�M2� �41�. Since the process of finding the bi-
cliques is rather involved, we have created a tool �BCFinder
�33�� that is able to automatically detect and display biclique
communities. BCFinder may be freely downloaded.

VIII. DISCUSSION

We have presented a method for detecting communities in
bipartite networks. Our method is based on an extension of
the k-clique community detection algorithm suggested by
Palla et al. �7�, and explains the relation between the biclique
communities and the communities in the corresponding uni-
partite graph. If bipartite information is available, the algo-
rithm retains all of the advantages of the k-clique algorithm
�overlapping nodes, the ability to find the network of com-
munities in a given network, etc.�, avoids discarding impor-
tant structural information when projecting the network, and
provides a level of flexibility due to the two thresholding
parameters a and b, cf. Sec. VI. The biclique method is com-

putationally manageable for many sparse networks; in cases
where the number of bicliques scales linearly with the num-
ber of links �as it is the case for the networks analyzed here�,
the algorimic complexity scales like O�M2�, where M is the
number of edges in the bipartite network.

While our purpose here is mainly to present and analyze
an approach for detecting communities in complex bipartite
networks, it is nonetheless instructive to see a small example
of the algorithm in action. Figure 6 shows the algorithm
applied to a real network, the cond-mat network of authors
and scientific papers from 1996 to medio 2006. The top
panel shows a K3,5-clique community of 4 authors and 11
papers; this community is a group of scientists studying
econo-physics. The bottom panel shows another K3,5-clique
community, this time consisting of 5 authors and 13 papers.
The topic of this second community is bio-physics, more
specifically analyses of various biological time series. A key
point is that two authors �Stanley and Amaral� are members
of both communities. The division into biclique communities
make it immediately clear that it is important that communi-
ties are allowed to overlap: There is no doubt that Stanley
and Amaral are full fledged members of both communities.
However, we also understand why the communities are dis-
tinct: they regard different subjects. The presence of context
�a list of authors are complemented by a list of papers and
vice versa� highly enriches our understanding of the commu-
nities; this information is not available from the one-mode
projections. A list of authors and papers in these two com-
munities can be found in the Appendix.

We expect that the biclique community detection algo-
rithm will be of practical importance in all areas where the
networks studied are bipartite �biological networks, affilia-
tion networks, information networks�.
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APPENDIX: TABLES

Tables I and II list the communities displayed in Fig. 6 for
easier reference.
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